

A Spectrum of IV&V Modeling Techniques
NAG-11971

Deliverable

 Title: Fault injection tools report

 WBS/Task: 4

 Date: Sunday, October 05, 2003

Grant

 Number: NAG-11971

 Project Title: A Spectrum of IV&V Modeling Techniques

 Contractor: University of Minnesota

Principal Investigator

 Name: Dr. Mats P.E. Heimdahl

 Title: Associate Professor

 Phone: (612) 625-2068

 Fax: (612) 625-0572

 Email: heimdahl@cs.umn.edu

Fault Seeding in RSML-e Specifications

Jimin Gao, Robert Weber, and George Devaraj

October 5, 2003

Contents

1 Introduction 1

2 Background 3
2.1 Fault Classes . 3
2.2 Mutation Analysis . 4
2.3 Representative Faults in RSML−e 5

3 Proposal 7
3.1 Mutation Operators . 7

4 Prototype Fault Seeder 15
4.1 Fault Injection Plan . 15
4.2 Fault Seeder Design . 19

4.2.1 Command Format . 19
4.2.2 Mutation Operators 19

4.3 Current Status . 33

1

Chapter 1

Introduction

This RSML-e fault seeding project is intended for generating incorrect spec-
ifications and using these specifications to evaluate the realistic performance
and fault detection capability of NAYO random search, statistical testing,
and various structural coverage criteria. Therefore, our primary goal is to
emulate the faults in real RSML-e specifications. At this time, the seeded
faults will be specifically used for NAYO search and statistical testing. This
report addresses our purpose in seeding faults in specifications, the fault
types we are interested in, the mutation operators we propose, open issues
in this area to be addressed, and our design approach for fault seeding in
RSML-e specifications.

NAYO random search is a technique that first builds the specification
model (states and transitions) using a graph notation, and then explores the
state space randomly to check for property violations and state reachability.
The viability of this approach is based on two observations: firstly, most
software faults affect a fair portion of the program state space, and walking
through the global state space randomly provides a cost-effective way to
search for these faults; Secondly, by randomly walking through the state
space, most program local states can be visited in a very short period of time
and the number of visited local states reaches a plateau afterwards, which can
potentially be exploited by summarizing the property violations as a number
of local states. In addition, when the model is large, sometimes it is simply
not feasible to build the complete state space using traditional model checking
techniques. In some sense, NAYO search performs a Monte Carlo simulation
on the model state space to estimate the severity of the faults. However,
this approach is not safe due to its incompleteness. Therefore, realistic fault

1

types and distributions are a necessity for evaluating its performance and
fault detection capability.

Fault seeding will also be beneficial for comparing the fault finding ability
and performance of different testing strategies that require test case gener-
ation. For example, we will compare structural testing against statistical
testing. Statistical testing uses an operational profile, the statistical behav-
ior of the system in its environment, to conduct random walks through a
system model to generate test cases. This method is expected to be able to
generate test cases more quickly than structural testing, but may not reach
total coverage of the model without extremely large numbers of test cases.
Structural testing can guarantee some level of model coverage but requires
more analysis effort to produce the test cases. We will experiment with these
strategies to determine their fault detection capabilities and the performance
tradeoffs between them. By creating faulty specifications through a well-
structured process, we can provide much more realistic and representative
testing conditions for comparison.

The generated faults can also be used to test the quality of the verification
suites. The set of temporal properties, assumed to express the complete
software requirements, may not be able to catch all the faults in reality. An
obvious situation is that many of the properties are expressed in terms of
RSML-e macros, and a stuck-at-false fault of a macro will not be detected by
these properties. Although they are not incorrect technically, they represent a
poor integration of model and properties that may create potential loopholes.
Therefore, if some changes are not detected by the verification suite, their
semantic significance must be manually examined and the overall quality of
the verification suite needs to be improved.

2

Chapter 2

Background

Before deciding on what types of faults to generate, we review some related
work on fault classes and mutation analysis, and the observed fault types in
real RSML-e specifications.

2.1 Fault Classes

Previous studies have classified software faults based on Boolean formula into
four types (classes) [1, 2]:

1. Variable Reference Fault (VRF) - a Boolean variable x is replaced by
another variable y, where x 6= y.

2. Variable Negation Fault (VNF) - a Boolean variable x is replaced by
x.

3. Expression Negation Fault (ENF) - a Boolean expression p is replaced
by p.

4. Missing Condition Fault (MCF) - a failure to check preconditions.

It has been shown that, for test vector generating purpose, SV RF ⇒
SV NF ⇒ SENF and SMCF ⇒ SV NF ⇒ SENF , where S represents the test
conditions for detecting these faults. Namely, a test vector that can detect
a variable reference fault or missing condition fault for a Boolean variable
occurrence can also detect its variable negation fault and expression negation
fault for the expression containing this occurrence. In lieu of performing

3

a study to determine which fault types subsume which others, we will be
seeding faults of various types, trading potentially more test cases and testing
time for fault realism.

These studies were intended for deriving test cases from the Boolean
formulas to be tested and obtaining a minimal set of test vectors that can
detect all possible faults in these formulas, as an extension of traditional hard-
ware testing procedure. Hence, no occurrence statistics for these faults are
available. However, these fault types should be considered because Boolean
formulas are a major component of any RSML-e specification. In addition,
the revealed logical relationship of these faults may imply a relationship of
their impacts to the state space of a RSML-e model (the incorrect states
introduced by a fault of one type may be a subset of the incorrect states
introduced by another fault type on the same Boolean expression), which
may in turn significantly affect the performance of NAYO search by creating
duplicate faults rather than unique faults.

Similar fault classes were identified in [6] and [8] but in relation to faults
found in programs, not specifications.

2.2 Mutation Analysis

Mutation analysis, combined with model checking, has been used to generate
test cases for safety property testing [3]. The mutation operators, applied
to original expression to generate mutant specifications, were further studied
in [4]. The mutation operators used are:

1. Operand Replacement Operator (ORO): replace an operand (a variable
or constant) with another syntactically legal operand.

2. Single Expression Negation Operator (SNO): replace a simple expres-
sion (a Boolean variable or an expression in the form token1 operator to-
ken2 where token1 and token2 are variables of scalar type or constants,
and operator is a relational operator) by its negation.

3. Expression Negation Operator (ENO): replace an expression by its
negation.

4. Logical Operator Replacement (LRO): replace a logical operator with
another logical operator.

4

5. Relational Operator Replacement (RRO): replace a relational operator
with another relational operator, expect for its opposite.

6. Missing Condition Operator (MCO): delete simple expressions from a
Boolean expression.

7. Stuck-At Operator (STO): consist of two operators. Stuck-At-0 re-
places a simple expression with 0 and Stuck-At-1 replaces a simple
expression with 1.

8. Associative Shift Operator (ASO): change the association between vari-
ables.

These mutation operators generally do not correspond exactly to the fault
classes discussed in [1]. However, ORO combined with RRO generates a class
of faults closely matching VRF. This operator is denoted ORO+.

Empirical studies of these mutation operators on several SMV specifica-
tion examples showed that ORO+ generated the largest number of incon-
sistent (de facto incorrect) semantically unique mutants and the generated
testing traces achieved coverage of 100%, using the metric introduced in [5].
It provided the same set of test cases as all the operators combined. This
result is consistent with the theoretical work of [1].

Although these mutation operators correspond to a more general set of
fault types than those discussed in section 2.1, they are still mostly focused
on the Boolean expressions.

2.3 Representative Faults in RSML−e

The revision histories of ToyFGS02 through ToyFGS05 were examined in
order to get a rough idea what types of faults are likely to appear in real
RSML-e models. The fault types discovered are:

1. Misspecified conditions. This can be in either a macro or state transi-
tion condition.

(a) Missing conditions: new predicates were later added to an An-
dOrTable, or a truth value of * was changed to T or F.

(b) Redundant conditions: conditions were later deleted from an An-
dOrTable, or a truth value of T or F was changed to *.

5

(c) Condition negation error: a truth value of T was later changed to
F or a truth value of F was changed to T.

2. Incorrect initial values. For example, an initial value of a state variable
or input variable was changed later from Undefined to True.

3. Variable-reference error. A misuse of macro or variable names such as
Is LAPPR Active where Is LAPPR Selected should be used.

Except for the incorrect initial values, most faults appear in AndOrTables,
the counterpart of a Boolean condition in other specification languages. The
incorrect initial values can be viewed as a special type of operand replacement
fault that is unique to RSML-e .

6

Chapter 3

Proposal

3.1 Mutation Operators

Considering the mutation operators from section 2.2 and the fault types dis-
cussed in section 2.3, mutation operators tailored for RSML-e can be defined
and applied to generate faulty specifications. Because RSML-e enforces the
use of AndOrTables for Boolean conditions by not providing the AND and OR

operators, some of the fault types discussed in section 2.2, such as the asso-
ciative shift faults and the logic operator replacement faults, cannot appear
in a RSML-e specification. They are therefore omitted. Below we show the
proposed mutation operators, their justifications and illustrating examples.
These operators are defined at the Abstract Syntax Tree (AST) level.

1. Variable Replacement Operator: replace a variable, macro or constant
name reference with names of the same type. When applied to An-
dOrTable predicates, incorrect variable references will be generated.
This covers the fault type 3 in section 2.3, one of most frequently seen
fault types in RSML-e . For example, the following AndOrTable

TABLE

When_HDG_Activated() : T * * *;

When_NAV_Activated() : * T * *;

When_LAPPR_Activated() : * * T *;

When_LGA_Activated() : * * * T;

END TABLE

7

can be changed to

TABLE

When_HDG_Activated() : T * * *;

When_NAV_Activated() : * T * *;

Is_LAPPR_Active() : * * T *;

When_LGA_Activated() : * * * T;

END TABLE

2. Condition Insertion Operator: replace a truth value in an AndOrTable,
in either a macro or state transition condition, from * to T or F. This
will cover fault type 1b in section 2.3. For example, the AndOrTable

TABLE

When_HDG_Activated() : T * * *;

When_NAV_Activated() : * T * *;

When_LAPPR_Activated() : * * T *;

When_LGA_Activated() : * * * T;

END TABLE

can be changed to

TABLE

When_HDG_Activated() : T * * *;

When_NAV_Activated() : * T * *;

When_LAPPR_Activated() : * * T T;

When_LGA_Activated() : * * * T;

END TABLE

3. Condition Removal Operator: replace a truth value in an AndOrTable,
in either a macro or state transition condition, from T or F or *. This
will cover fault type 1a in section 2.3. For example, the AndOrTable

TABLE

When_HDG_Activated() : T * * *;

When_NAV_Activated() : * T * *;

When_LAPPR_Activated() : * * T *;

When_LGA_Activated() : * * * T;

END TABLE

8

can be changed to

TABLE

When_HDG_Activated() : T * * *;

When_NAV_Activated() : * T * *;

When_LAPPR_Activated() : * * * *;

When_LGA_Activated() : * * * T;

END TABLE

4. Condition Negation Operator: replace a truth value in an AndOrTable,
in either a macro or state transition condition, from T or F or from F

to T. This will cover fault type 1c in section 2.3. For example, the
AndOrTable

TABLE

When_HDG_Activated() : T * * *;

When_NAV_Activated() : * T * *;

When_LAPPR_Activated() : * * T *;

When_LGA_Activated() : * * * T;

END TABLE

can be changed to

TABLE

When_HDG_Activated() : T * * *;

When_NAV_Activated() : * T * *;

When_LAPPR_Activated() : * * F *;

When_LGA_Activated() : * * * T;

END TABLE

5. Literal Replacement Operator: a literal value occurrence, in constant
definitions, state variable or input variable initial value declarations,
state transition target value or source value expressions, or AndOrTable
predicates, is replaced with another value of the same type or Undefined.
This will cover fault type 2 in section 2.3 and some other possible fault
types. For example, the following state variable definition

9

STATE_VARIABLE Is_ROLL_Selected: Boolean

PARENT : NONE

INITIAL_VALUE : FALSE

CLASSIFICATION: CONTROLLED

EQUALS (..ROLL = Selected) IF TRUE

END STATE_VARIABLE

can be changed to (two literals are changed for illustrative purpose)

STATE_VARIABLE Is_ROLL_Selected: Boolean

PARENT : NONE

INITIAL_VALUE : TRUE

CLASSIFICATION: CONTROLLED

EQUALS (..ROLL = Cleared) IF TRUE

END STATE_VARIABLE

and as another example, the constant definition

CONSTANT THIS_SIDE : Side

VALUE : LEFT

END CONSTANT

can be changed to

CONSTANT THIS_SIDE : Side

VALUE : RIGHT

END CONSTANT

6. Stuck-at Operator: an AndOrTable, in a macro definition or in a state
variable transition condition, is replaced by True (stuck-at-true) or
False (stuck-at-false). Although these types of faults are less likely to
appear in real RSML-e specifications, as discussed in section 1, they
potentially can be used to evaluate the quality of the test suite. For
example, the macro definition

10

MACRO Overspeed_Condition() :

TABLE

Overspeed != UNDEFINED : T;

Overspeed = TRUE : T;

END TABLE

END MACRO

can be changed to

MACRO Overspeed_Condition() :

TRUE

END MACRO

for a stuck-at-true fault.

7. Predicate Removal Operator: a row in an AndOrTable is removed,
resulting in single or multiple missing condition faults. For example,
the AndOrTable

TABLE

When_ALT_Switch_Pressed_Seen() : T *;

PREV_STEP(Is_VAPPR_Active) : F F;

When_ALTSEL_Target_Altitude_Changed_Seen() : * T;

PREV_STEP(Is_ALTSEL_Track) : * T;

END TABLE

can be changed to

TABLE

When_ALT_Switch_Pressed_Seen() : T *;

When_ALTSEL_Target_Altitude_Changed_Seen() : * T;

PREV_STEP(Is_ALTSEL_Track) : * T;

END TABLE

This type of operations are simply synthetic effects of several Truth
Value Replacement operations. They are needed however, because in-
tuitively people do make these mistakes when writing specifications.

11

8. Not Operator Removal/Insertion Operator: a Not operator is removed
from or inserted to a Boolean expression. NOT is the only logic op-
erator allowed in RSML-e . It can appear in the AndOrTable predi-
cates, in state variable transition conditions or macro definitions if an
AndOrTable is not used, and in state variable transition target value
expressions. The removal/insertion of a NOT in AndOrTable predicates
have the same effect as a Condition Negation operation, so this opera-
tor should be used only for full condition expressions and target value
expressions. For example, the state variable definition

STATE_VARIABLE Independent_Mode: On_Off

PARENT : None

INITIAL_VALUE : Off

CLASSIFICATION: State

EQUALS On IF Independent_Mode_Condition()

EQUALS Off IF NOT Independent_Mode_Condition()

END STATE_VARIABLE

can be changed to (both removal and insertion are done for illustrative
purpose)

STATE_VARIABLE Independent_Mode: On_Off

PARENT : None

INITIAL_VALUE : Off

CLASSIFICATION: State

EQUALS On IF NOT Independent_Mode_Condition()

EQUALS Off IF Independent_Mode_Condition()

END STATE_VARIABLE

9. Relational Operator Replacement Operator: if its operands are of Inte-
ger or Real type, a relational operator is replaced with another rela-
tional operator except for its opposite. This operator generates an
incorrect predicate with a mistreated boundary value. For example,
the macro definition

12

MACRO AboveThresholdHyst() :

TABLE

AltitudeQ1 = Good : T F T;

Altitude1 = UNDEFINED : F * F;

Altitude1 > AltitudeThreshold + Hysteresis : T * T;

AltitudeQ2 = Good : F T T;

Altitude2 = UNDEFINED : * F F;

Altitude2 > AltitudeThreshold + Hysteresis : * T T;

END TABLE

END MACRO

can be changed to

MACRO AboveThresholdHyst() :

TABLE

AltitudeQ1 = Good : T F T;

Altitude1 = UNDEFINED : F * F;

Altitude1 > AltitudeThreshold + Hysteresis : T * T;

AltitudeQ2 = Good : F T T;

Altitude2 = UNDEFINED : * F F;

Altitude2 >= AltitudeThreshold + Hysteresis: * T T;

END TABLE

END MACRO

However, since relational expressions are rare in RSML-e specifications
(nonexistent in the FGS models) and numeric values are generally dif-
ficult to deal with in model checking, this operator is less important at
this stage and its implementation can be postponed.

10. Numeric Operator Replacement Operator: a numeric operator in An-
dOrTable predicates or in state transition target value expressions can
be replaced by another numerical operator. For example, the macro
definition shown above can be changed to

MACRO AboveThresholdHyst() :

TABLE

AltitudeQ1 = Good : T F T;

13

Altitude1 = UNDEFINED : F * F;

Altitude1 > AltitudeThreshold + Hysteresis : T * T;

AltitudeQ2 = Good : F T T;

Altitude2 = UNDEFINED : * F F;

Altitude2 > AltitudeThreshold - Hysteresis : * T T;

END TABLE

END MACRO

For the same reason as discussed above, the implementation of this
operator is probably not necessary at this stage.

14

Chapter 4

Prototype Fault Seeder

In this section, we discuss the requirements and algorithms for the fault
seeder and how we plan to use the fault seeder to generate fault sets that
satisfy our needs. The goal of our fault seeder is to produce multiple faulty
versions of the specification, each with a single fault of a specified type. The
fault seeder can be implemented in NIMBUS using the visitor design pattern
and it makes controlled transformations to the internal representation of
the specification (Abstract Syntax Tree).The fault seeder has the following
components as illustrated in Figure 4.1:

1. The User-Interface component queries the fault type to be seeded and
number of faulty versions to be generated for the subject specification.

2. The Fault Seeder performs the fault injection by picking the replace-
ments corresponding to that fault type at random using a random num-
ber generator. It also annotates information regarding the location of
fault injection and the modification performed.

3. The Reverse-Specification Generator takes the mutated Abstract Syn-
tax Tree and translates it back to the specification in RSML-e , resulting
in a mutant RSML-e specification.

4.1 Fault Injection Plan

Step 1: Choose the Artifacts. We intend to apply the fault seeder to
a large specification such as the FGS05 specification due to the following

15

Figure 4.1: Prototype Fault Seeder in NIMBUS

16

User

Fault
Seeder

RSML-e
Specification

Fault Type

Mutated AST

NIMBUS
Parser

AST

Reverse-
Specification

Generator

Mutant RSML-e
Specification

Annotated
information

Generate

Generate

Generate

reasons:

1. Early experiments have shown that for FGS01, SMV without using
optimization options has better performance than NAYO. However,
for larger-sized specification FGS05, in most test runs NAYO is twice
as fast as SMV with options -coi and -dynamic enabled (can be slower
sometimes because of the randomness). Since both can process FGS05
in a reasonable amount of time, and to better observe the performance
differences, we will not deal with the smaller-sized models.

2. To demonstrate the scalability of the statistical testing approach to
larger models and to compare the results obtained with other testing
strategies like structural testing.

Step2: Determine number of faults to be seeded corresponding to
each fault type. Previous sections identified the faults that are repre-
sentative of the typically occurring faults. Unfortunately, to date, there is
no accepted model with which to determine how many faults of each fault
type need to be seeded. Furthermore, the distribution of faults is likely to
be significantly different for different developers and different organizations.
Therefore, we will seed enough faults of each type of fault to allow for seed-
ing in various levels of the model. Also, the number of faults we seed will
be based partly on the number of opportunities for each fault to be seeded.
That is, those fault types that have many locations that could be seeded will
have many faults seeded; those that have few potential seeding sites will have
fewer faults seeded. In reference to our target specification (i.e., FGS05), an
exemplary distribution of faults is shown in Table 4.1, which is more or less
uniform in nature.

Note that these numbers are just rough figures and were in part deter-
mined based on the number of variables, condition tables and predicates in
the FGS05 specification. In general, a good estimate as to the number of
faults of each fault type to seed can be obtained by a careful examination of
the RSML-e specification for the following:

1. Number of variables and variable references.

2. Number of condition tables in the specification.

17

Fault Type Number of Faults
Variable Replacements 20
Condition Insertions 20
Condition Removals 20
Condition Negations 20

Literal Value replacements 20
Stuck-at faults 10

Predicate Removals 10
NOT-insertions and deletions 10

Table 4.1: Tentative Fault Distribution for FGS05

3. Number of numeric expressions in the specification. These can occur as
predicates in the condition tables or as target expressions in the state
transitions.

4. Number of predicates in the condition table.

Alternatively, we can choose a different fault distribution for special pur-
poses. This can be done easily and is something that can be experimented
with.

Step3: Perform the randomized fault seeding. The fault transfor-
mation component of our fault seeder can be implemented in the NIMBUS
environment using a visitor pattern. This visitor would take as input the
fault type that the user desires (e.g., macro name replacement), copy the
AST, gather the places the fault type could be seeded, and then use random
numbers to choose the site to seed and the actual fault that is seeded. The
fault transformation component also has the task of annotating the seeded
fault and location information in a separate output file.

Step4: Run the mutated Abstract Syntax Tree through the Reverse-
Specification Generator. The mutated Abstract Syntax Tree is used by
the Reverse-Specification Generator to produce a faulty version or mutant of
the original specification.

18

Fault Type Command Option
Variable Replacements -vr
Condition Insertions -ci
Condition Removals -cr
Condition Negations -cn

Literal Value replacements -lr
Stuck-at faults -s

Predicate Removals -pr
NOT-insertions and deletions -n

Table 4.2: Command Options for Fault Seeding

4.2 Fault Seeder Design

4.2.1 Command Format

The fault seeding command for the NIMBUS toolset will be formulated in
the following way:

seedfault [option number] ...

option indicates the type of faults to seed, and number specifies the number
of faulty specifications to generate for this particular type of fault. Table 4.2
summarizes the command options and the fault types they represent.

4.2.2 Mutation Operators

Each mutation operator proposed in 3.1 can be implemented as a Visitor
class. All these Visitors perform similar tasks: they copy the AST, traverse
the AST copy to collect the relevant information, create a random mutation
of a particular type in the AST copy, and output the mutated AST copy as a
corresponding faulty RSML-e specification. This process is repeated as many
times as needed to generate the required number of faulty specifications. An
explanation of the fault will appear at the location where the change is made
as a comment line.

In this document, we only specify the detailed designs of the first six
mutation operators, since these would be enough for our current experiments.

19

Variable Replacement Visitor

To generate a random variable replacement mutation in the AST, the RVarReplaceVisitor
first traverses the AST. In this process, the pointers to all variable, con-
stant, macro and function reference expressions in AndOrTables are added
to a single vector refs, and pointers to all variable, constant, macro and
function names are grouped into a map defs indexed by their types. The
RVarReplaceVisitor then randomly pick an element from vector refs and
mutate it with a random element in map defs of compatible type. However,
we will not attempt to replace a variable reference with macro or functional
calls and vice versa, due to the difficulty in replacing an expression node in
the AST completely. Instead, we simply mutate the relevant fields of the
expression node. In addition, we do not mutate any macro or functional call
into a macro or function call with parameters. The C++ style pseudocode
for the Variable Replacement Visitor is shown below:

#include <vector>

#include <map>

#include <string>

#include <cstdlib>

typedef vector<RDataStructureObject*> nodeVector;

typedef map<string, nodeVector > defMap;

class RVarReplaceVisitor {

private:

RComponent *fComponent;

nodeVector refs;

defMap defs;

unsigned int faultNumber;

public:

RVarReplaceVisitor(unsigned int number) {

fComponent = NULL;

faultNumber = number;

}

virtual ~RVarReplaceVisitor() { }

void execute(RComponent* component) {

RCloneComponentPass1Visitor p1_visitor;

RCloneComponentPass2Visitor p2_visitor;

RComponent *fComponentCopy;

RTwoComponentMap* componentMap;

unsigned int random1, random2, i = 0, flag = 0;

fComponent = component;

while (i < faultNumber) {

// copy the AST

20

fComponentCopy = new RComponent();

componentMap = new RTwoComponentMap(fComponentCopy);

p1_visitor.execute(fComponent, fComponentCopy, componentMap);

p2_visitor.execute(fComponent, fComponentCopy, componentMap);

// rename the AST copy

stringstream ss;

ss << fComponent.name() << "_VarReplaceFault" << i;

fComponentCopy->setName(ss.str());

// attempt to visit state variable definitions

{

StateVariableSet::iterator it;

for (it = fComponentCopy->stateVariables().begin();

it != fComponentCopy->stateVariables().end();

it++) {

attemptVisit(*it);

}

}

// attempt to visit input variable definitions

{

InputVariableSet::iterator it;

for (it = fComponentCopy->inputVariables().begin();

it != fComponentCopy->inputVariables().end();

it++) {

attemptVisit(*it);

}

}

// attempt to visit receive type input interfaces

{

InputReceiverSet::iterator it;

for (it = fComponentCopy->inputReceivers().begin();

it != fComponentCopy->inputReceivers().end();

it++) {

attemptVisit(*it);

}

}

// attempt to visit read type input interfaces

...

// attempt to visit output interfaces

...

// attempt to visit macros definitions

...

// attempt to visit function definitions

...

RMacroPred* targetMacroExpr;

RFunctionExpr* targetFuncExpr;

RVariableValueExpr* targetVarExpr;

RConstantExpr* targetConstExpr;

21

// select a random element from references

random1 = rand() * refs.size() / (RAND_MAX + 1.0);

targetMacroExpr = dynamic_cast<RMacroPred*>(refs.at(random1));

targetFuncExpr = dynamic_cast<RFunctionExpr*>(refs.at(random1));

targetVarExpr = dynamic_cast<RVariableValueExpr*>(refs.at(random1));

targetConstExpr = dynamic_cast<RConstantExpr*>(refs.at(random1));

// find a random compatible replacement for the reference

if (targetMacroExpr) {

string s(";;macro");

defMap::const_iterator iter = defs.find(s);

if (iter != defs.end()) {

random2 = rand() * (iter->second.size()) / (RAND_MAX + 1.0);

if (iter->second.at(random2) != targetMacroExpr->macro()) {

targetMacroExpr->setMacro(iter->second.at(random2));

flag = 1;

}

}

}

else if (targetFuncExpr) {

string s = targetFuncExpr->func()->type()->name() + ";;func";

defMap::const_iterator iter = defs.find(s);

if (iter != defs.end()) {

random2 = rand() * (iter->second.size()) / (RAND_MAX + 1.0);

if (iter->second.at(random2) != targetFuncExpr->function()) {

targetFuncExpr->setFunction(iter->second.at(random2));

flag = 1;

}

}

}

else if (targetVarExpr) {

string s = targetVarExpr->variable()->type()->name() + ";;var";

defMap::const_iterator iter = defs.find(s);

if (iter != defs.end()) {

random2 = rand() * (iter->second.size()) / (RAND_MAX + 1.0);

if (iter->second.at(random2) != targetVarExpr->variable()) {

targetVarExpr->setVariable(iter->second.at(random2));

flag = 1;

}

}

}

else if (targetConstExpr) {

string s = targetConstExpr->constant()->type()->name() + ";;var";

defMap::const_iterator iter = defs.find(s);

if (iter != defs.end()) {

random2 = rand() * (iter->second.size()) / (RAND_MAX + 1.0);

if (iter->second.at(random2) != targetConstExpr->variable()) {

targetConstExpr->setConstant(iter->second.at(random2));

flag = 1;

}

}

}

22

if (flag) {

// typecheck the mutated AST

RParseMessageList l;

RPP_TypeCheck typeChecker(*newComponent, l);

typeChecker.execute();

if (l.errorCount == 0) {

// print AST to RSML spec

RPrintASTVisitor pv;

pv.execute(fComponentCopy);

i ++;

flag = 0;

}

}

delete fComponentCopy;

delete componentMap;

}

}

void visit(RStateVariable& sv, RVisitParam*) {

string key = sv.type()->name() + ";;var";

defMap::iterator iter = defs.find(s);

// add variable to definition map

if (iter != defs.end()) {

iter->second.push_back(&sv);

}

else {

nodeVector n_vec;

n_vec.push_back(&sv);

pair<string, nodeVector > p1(key, n_vec);

defs.insert(p1);

}

// iterate through the cases and attempt to visit

// the AndOrTables in the conditions

...

}

void visit(RAndOrTable& table, RVisitParam*) {

// iterate and attempt to visit the predicates

}

void visit(RVariableValueExpr& expr, RVisitParam*) {

refs.push_back(&expr);

}

void visit(RMacro& m, RVisitParam*) {

// add macro to definition map

string key(";;macro");

defMap::iterator iter = defs.find(s);

if (iter != defs.end()) {

iter->second.push_back(&m);

}

else {

23

nodeVector n_vec;

n_vec.push_back(&m);

pair<string, nodeVector > p1(key, n_vec);

defs.insert(p1);

}

// attempt to visit the AndOrTable

...

}

void visit(RCaseFunction& func, RVisitParam*) {

string key = func.type()->name() + ";;func";

defMap::iterator iter = defs.find(s);

// add function to definition map

if (iter != defs.end()) {

iter->second.push_back(&func);

}

else {

nodeVector n_vec;

n_vec.push_back(&func);

pair<string, nodeVector > p1(key, n_vec);

defs.insert(p1);

}

// attempt to visit the conditions

...

}

void visit(RMacroPred& expr, RVisitParam*) {

refs.push_back(&expr);

}

void visit(RFunctionExpr& expr, RVisitParam*) {

refs.push_back(&expr);

}

void visit(RConstantExpr& expr, RVisitParam*) {

refs.push_back(&expr);

}

// visit functions for other constructs and expressions

...

}

Condition Insertion Visitor

To change an AndOrTable truth value of * to T or F, the Visitor needs to
keep track of all the pointers to the AndOrTables in a RSML-e specification.
We use a vector allTables for this purpose. A mutation target is selected
by randomly choosing a table from this vector and then randomly choosing
an index for the truth values. If the selected truth value is *, the mutation
is performed. However, if the truth value is not *, this selection is discarded

24

and another random selection is made until a * is found. The C++ style
pseudocode for the RCondInsertVisitor is shown below:

#include <vector>

#include <cstdlib>

class RCondInsertVisitor {

private:

RComponent *fComponent;

vector<RAndOrTable*> allTables;

unsigned int faultNumber;

public:

RCondInsertVisitor(unsigned int number) {

fComponent = NULL;

faultNumber = number;

}

virtual ~RCondInsertVisitor() { }

void execute(RComponent* component) {

RCloneComponentPass1Visitor p1_visitor;

RCloneComponentPass2Visitor p2_visitor;

RComponent *fComponentCopy;

RTwoComponentMap* componentMap;

unsigned int random1, random2, random3, random4, flag = 0;

fComponent = component;

while (i < faultNumber) {

// copy the AST

fComponentCopy = new RComponent();

componentMap = new RTwoComponentMap(fComponentCopy);

p1_visitor.execute(fComponent, newComponent, componentMap);

p2_visitor.execute(fComponent, newComponent, componentMap);

// rename the AST copy

stringstream ss;

ss << fComponent.name() << "_CondInsertFault" << i;

fComponentCopy->setName(ss.str());

// attempt to visit state variable definitions

{

StateVariableSet::iterator it;

for (it = fComponentCopy->stateVariables().begin();

it != fComponentCopy->stateVariables().end();

it++) {

attemptVisit(*it);

}

}

// attempt to visit receive type input interfaces

{

InputReceiverSet::iterator it;

for (it = fComponentCopy->inputReceivers().begin();

it != fComponentCopy->inputReceivers().end();

it++) {

25

attemptVisit(*it);

}

}

// attempt to visit read type input interfaces

...

// attempt to visit output interfaces

...

// attempt to visit macros definitions

...

// attempt to visit function definitions

...

// select a random cell from the tables

random1 = rand() * allTables.size() / (RAND_MAX + 1.0);

RAndOrTable* temp = allTables.at(random1);

random2 = rand() * temp->height() / (RAND_MAX + 1.0);

random3 = rand() * temp->width() / (RAND_MAX + 1.0);

// change it to T or F if originally *

if (temp->cell(random3, random2) == kDontCare) {

random4 = rand() * 2 / (RAND_MAX + 1.0);

temp->setCell(random3, random2, random4);

flag = 1;

}

if (flag) {

// typecheck the mutated AST

RParseMessageList l;

RPP_TypeCheck typeChecker(*newComponent, l);

typeChecker.execute();

if (l.errorCount == 0) {

// print AST to RSML spec

RPrintASTVisitor pv;

pv.execute(fComponentCopy);

i ++;

flag = 0;

}

}

delete fComponentCopy;

delete componentMap;

}

}

void visit(RStateVariable& sv, RVisitParam*) {

// iterate through the cases and attempt to visit

// the associated AndOrTables

}

void visit(RAndOrTable& table, RVisitParam*) {

allTables.push_back(&table);

}

26

// visit functions for other constructs

...

}

Condition Removal Visitor

The tasks performed to create a condition removal mutation in an An-
dOrTable are similar to that of the Condition Insertion Visitor. So it can be
grouped with the previous example, with an added class variable indicating
the type of operation to be performed.

Condition Negation Visitor

Similarly, the Condition Negation Visitor can be grouped with the previous
two visitors.

Literal Replacement Visitor

To mutate a literal value into another value of a compatible type, the Literal
Replacement Visitor gathers all the literal expression occurrences into a vec-
tor allLiterals, randomly select an element from this vector and randomly
mutate it to a value of the same type. Int and Real type literals will not be
mutated. The C++ pseudocode for the LitReplaceVisitor class is shown
below:

class RLitReplaceVisitor {

private:

RComponent *fComponent;

vector<RLiteralValueExpr*> allLiterals;

unsigned int faultNumber;

public:

RLitReplaceVisitor(unsigned int number) {

fComponent = NULL;

faultNumber = number;

}

virtual ~RLitReplaceVisitor() { }

void execute(RComponent* component) {

RCloneComponentPass1Visitor p1_visitor;

RCloneComponentPass2Visitor p2_visitor;

RComponent *fComponentCopy;

RTwoComponentMap* componentMap;

unsigned int random1, random2, flag = 0;

27

fComponent = component;

while (i < faultNumber) {

// copy the AST

fComponentCopy = new RComponent();

componentMap = new RTwoComponentMap(fComponentCopy);

p1_visitor.execute(fComponent, newComponent, componentMap);

p2_visitor.execute(fComponent, newComponent, componentMap);

// rename the AST copy

stringstream ss;

ss << fComponent.name() << "_LitReplaceFault" << i;

fComponentCopy->setName(ss.str());

// attempt to visit state variable definitions

{

StateVariableSet::iterator it;

for (it = fComponentCopy->stateVariables().begin();

it != fComponentCopy->stateVariables().end();

it++) {

attemptVisit(*it);

}

}

// attempt to visit input variable definitions

{

InputVariableSet::iterator it;

for (it = fComponentCopy->inputVariables().begin();

it != fComponentCopy->inputVariables().end();

it++) {

attemptVisit(*it);

}

}

// attempt to visit receive type input interfaces

{

InputReceiverSet::iterator it;

for (it = fComponentCopy->inputReceivers().begin();

it != fComponentCopy->inputReceivers().end();

it++) {

attemptVisit(*it);

}

}

// attempt to visit read type input interfaces

...

// attempt to visit output interfaces

...

// attempt to visit macros definitions

...

// attempt to visit function definitions

...

// attempt to visit constant definitions

28

...

random1 = rand() * allLiterals.size() / (RAND_MAX + 1.0);

RLiteralValueExpr* temp = allLiterals.at(random1);

// mutate the literal value for enum and bool types

if (temp->value().type()->type() == RType::kEnum) {

if (!temp->value().undefined()) {

random2 = rand() * (((RTypeEnum*)temp->value().type())->elements().size()

+ 1.0) / (RAND_MAX + 1.0);

if (random2 == ((RTypeEnum*)temp->value().type())->elements().size()) {

temp->value().makeUndefined();

flag = 1;

}

else if (value.enumVal() != random2) {

temp->value().setEnumVal(random2);

flag = 1;

}

}

else {

random2 = rand() * ((RTypeEnum*)temp->value().type())->elements().size()

/ (RAND_MAX + 1.0);

// makeDefined() function not available now, should be added to RValue

temp->value.makeDefined();

temp->value.setEnumVal(random2);

flag = 1;

}

}

else if (temp->value().type()->type() == RType::kBool) {

if (!temp->value().undefined()) {

random2 = rand() * 2 / (RAND_MAX + 1.0);

if (random2 == 1) temp->value().makeUndefined();

else temp->value().setBoolVal(!temp->value().boolVal());

flag = 1;

}

else {

random2 = rand() * 2 / (RAND_MAX + 1.0);

temp->value.makeDefined();

if (random2) temp->value().setBoolVal(true);

else temp->value().setBoolVal(false);

flag = 1;

}

}

if (flag) {

// print AST to RSML spec

RPrintASTVisitor pv;

pv.execute(fComponentCopy);

i ++;

flag = 0;

}

delete fComponentCopy;

29

delete componentMap;

}

}

void visit(RStateVariable& sv, RVisitParam*) {

attemptVisit(sv.initialValue());

vector<RCase*>::iterator iter;

for (iter = sv.cases().begin(); iter != sv.cases().end(); iter ++) {

attemptVisit((*iter)->assignExpression());

attemptVisit((*iter)->condition()->andOrTable());

}

}

void visit(RAndOrTable& table, RVisitParam*) {

for (int i = 0; i < table.height(); i ++)

attemptVisit(table.predicate(i));

}

void visit(RLiteralValueExpr& expr, RVisitParam*) {

allLiterals.push_back(&expr);

}

// visit functions for other constructs and expressions

...

}

Stuck-At Visitor

The Struck-at Visitor gathers all the parent nodes of the RCondition objects
(including RCase, RMacro, and RIOActionHandler objects), randomly select
one and replace its child condition node with a new RCondition object that
represents True or False. The C++ style pseudocode for StuckAtVisitor

is shown below:

class RStuckAtVisitor { private:

RComponent *fComponent;

vector<RDataStructureObject*> allConditions;

unsigned int faultNumber;

public:

RStuckAtVisitor(unsigned int number) {

fComponent = NULL;

faultNumber = number;

}

virtual ~RStuckAtVisitor() { }

void execute(RComponent* component) {

RCloneComponentPass1Visitor p1_visitor;

RCloneComponentPass2Visitor p2_visitor;

RComponent *fComponentCopy;

RTwoComponentMap* componentMap;

30

unsigned int random1, random2, flag = 0;

fComponent = component;

while (i < faultNumber) {

// copy the AST

fComponentCopy = new RComponent();

componentMap = new RTwoComponentMap(fComponentCopy);

p1_visitor.execute(fComponent, newComponent, componentMap);

p2_visitor.execute(fComponent, newComponent, componentMap);

// rename the AST copy

stringstream ss;

ss << fComponent.name() << "_LitReplaceFault" << i;

fComponentCopy->setName(ss.str());

// attempt to visit state variable definitions

{

StateVariableSet::iterator it;

for (it = fComponentCopy->stateVariables().begin();

it != fComponentCopy->stateVariables().end();

it++) {

attemptVisit(*it);

}

}

// attempt to visit receive type input interfaces

{

InputReceiverSet::iterator it;

for (it = fComponentCopy->inputReceivers().begin();

it != fComponentCopy->inputReceivers().end();

it++) {

attemptVisit(*it);

}

}

// attempt to visit read type input interfaces

...

// attempt to visit output interfaces

...

// attempt to visit macros definitions

...

// attempt to visit function definitions

...

random1 = rand() * allLiterals.size() / (RAND_MAX + 1.0);

RMacro* targetMacro = dynamic_cast<RMacro*>(allConditions.at(random1));

RCase* targetCase = dynamic_cast<RCase*>(allConditions.at(random1));

RIOActionHandler* targetHandler = dynamic_cast<RIOActionHandler*>(allConditions.at(random1));

RliteralValueExpr* literal;

random2 = rand() * 2 / (RAND_MAX + 1.0);

if (random2) {

RValue trueVal(true);

31

literal = new RLiteralValueExpr(trueVal);

}

else {

RValue falseVal(false);

literal = new RliteralValueExpr(falseVal);

}

if (targetMacro) {

delete targetMacro->condition();

targetMacro.setCondition(new RCondition(literal));

flag = 1;

}

else if (targetCase) {

delete targetCase->condition();

targetCase->setCondition(new RCondition(literal));

flag = 1;

}

else if (targetHandler) {

delete targetHandler->condition();

targetHandler->setCondition(new RCondition(literal));

flag = 1;

}

if (flag) {

// typecheck the mutated AST

RParseMessageList l;

RPP_TypeCheck typeChecker(*newComponent, l);

typeChecker.execute();

if (l.errorCount == 0) {

// print AST to RSML spec

RPrintASTVisitor pv;

pv.execute(fComponentCopy);

i ++;

flag = 0;

}

}

delete fComponentCopy;

delete componentMap;

}

}

void visit(RStateVariable& sv, RVisitParam*) {

vector<RCase*>::iterator iter;

for (iter = sv.cases().begin(); iter != sv.cases.end(); iter ++)

allConditions.push_back(*iter);

}

void visit(RMacro& sv, RVisitParam*) {

allConditions.push_back(&sv);

}

void visit(RInputReceiver& ir, RVisitParam*) {

vector<RIOActionHandler*>::iterator iter;

32

for (iter = ir.receiveHandlers().begin();

iter != ir.receiveHandlers().end(); iter ++)

allConditions.push_back(*iter);

}

// visit functions for other constructs

...

}

4.3 Current Status

Up to now we have implemented the four fault-seeding visitors that relate
to fault types we observed during the original development: the Variable
Replacement Faults, the Condition Insertion Faults, the Condition Removal
Faults, and the Condition Negation Faults. One hundred faults of the four
types in RSML-e specifications were automatically generated and used in
Lurch random search experiments.

33

Bibliography

[1] D. R. Kuhn. Fault classes and error detection capability of specification-
based testing. ACM Transactions on Software Engineering Methodology,
8(4), pages 411-424, October 1999.

[2] T. Tsuchiya and T. Kikuno. On fault classes and error detection ca-
pability of specification-based testing. ACM Transactions on Software
Engineering Methodology, 11(1), pages 58-62, January 2002.

[3] P. E. Ammann, P. E. Black, and W. Majurski. Using model checking to
generate tests from specifications. In Proceedings of the Second IEEE
International Conference on Formal Engineering Methods (ICFEM’98),
pages 46-54. IEEE Computer Society, Dec. 1998.

[4] P. E. Black, V. Okun, and Y. Yesha. Mutation operators for specifica-
tions. Automated Software Engineering, 2000. Proceedings ASE 2000.
The Fifteenth IEEE International Conference on , 2000 Pages 81-88.

[5] P. E. Ammann and P. E. Black. A specification-based coverage metric
to evaluate test sets. In Proceedings of Fourth IEEE International High-
Assurance Systems Engineering Symposium (HASE 99), pages 239-248.
IEEE Computer Society, November 1999.

[6] K. Tewary and M. J. Harrold. Fault modeling using the program de-
pendence graph. Proceedings of the Fifth International Symposium on
Software Reliability Engineering, November 1994, pp. 126-135.

[7] F. D. Frate, et al. On the correlation between code coverage and soft-
ware reliability. Proceedings of the Sixth International Symposium on
Software Reliability Engineering, October 1995, pp. 124-132.

34

[8] A. Pasquini, E. D. Agostino, and G. Di Marco. An input-domain based
method to estimate software reliability. IEEE Transactions on Reliability,
March 1996, pp. 95-105.

35

